p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.176C23, C22⋊C4⋊9Q8, (C22×Q8)⋊7C4, C23.6(C2×Q8), C22.13(C4×Q8), C4.15(C23⋊C4), C23.9(C4○D4), C23.576(C2×D4), (C22×C4).306D4, C22.12(C4⋊Q8), C23.9D4.6C2, C23.200(C22×C4), (C23×C4).266C22, C22.30(C22⋊Q8), C23.7Q8.17C2, C22.22(C4.4D4), C2.29(C23.C23), C2.18(C23.67C23), (C2×C4⋊C4)⋊15C4, C2.29(C2×C23⋊C4), (C4×C22⋊C4).17C2, (C22×C4).26(C2×C4), (C2×C22⋊Q8).11C2, (C2×C4).209(C22⋊C4), (C2×C22⋊C4).16C22, C22.305(C2×C22⋊C4), SmallGroup(128,728)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.176C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=c, f2=abc, g2=b, ab=ba, ac=ca, eae-1=faf-1=ad=da, ag=ga, bc=cb, bd=db, geg-1=be=eb, bf=fb, bg=gb, fcf-1=cd=dc, ce=ec, cg=gc, de=ed, df=fd, dg=gd, fef-1=ae, fg=gf >
Subgroups: 364 in 162 conjugacy classes, 58 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, C23.9D4, C4×C22⋊C4, C23.7Q8, C2×C22⋊Q8, C24.176C23
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C23⋊C4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C23.67C23, C2×C23⋊C4, C23.C23, C24.176C23
(1 13)(2 6)(3 7)(4 12)(5 15)(8 9)(10 11)(14 16)(17 26)(18 25)(19 28)(20 27)(21 30)(22 29)(23 32)(24 31)
(1 7)(2 8)(3 13)(4 14)(5 10)(6 9)(11 15)(12 16)(17 30)(18 31)(19 32)(20 29)(21 26)(22 27)(23 28)(24 25)
(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 15)(2 16)(3 10)(4 9)(5 13)(6 14)(7 11)(8 12)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 17 3 23)(2 25 9 29)(4 31 16 27)(5 26 11 32)(6 20 8 24)(7 30 13 28)(10 21 15 19)(12 22 14 18)
(1 2 7 8)(3 9 13 6)(4 5 14 10)(11 12 15 16)(17 25 30 24)(18 21 31 26)(19 27 32 22)(20 23 29 28)
G:=sub<Sym(32)| (1,13)(2,6)(3,7)(4,12)(5,15)(8,9)(10,11)(14,16)(17,26)(18,25)(19,28)(20,27)(21,30)(22,29)(23,32)(24,31), (1,7)(2,8)(3,13)(4,14)(5,10)(6,9)(11,15)(12,16)(17,30)(18,31)(19,32)(20,29)(21,26)(22,27)(23,28)(24,25), (17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,10)(4,9)(5,13)(6,14)(7,11)(8,12)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,3,23)(2,25,9,29)(4,31,16,27)(5,26,11,32)(6,20,8,24)(7,30,13,28)(10,21,15,19)(12,22,14,18), (1,2,7,8)(3,9,13,6)(4,5,14,10)(11,12,15,16)(17,25,30,24)(18,21,31,26)(19,27,32,22)(20,23,29,28)>;
G:=Group( (1,13)(2,6)(3,7)(4,12)(5,15)(8,9)(10,11)(14,16)(17,26)(18,25)(19,28)(20,27)(21,30)(22,29)(23,32)(24,31), (1,7)(2,8)(3,13)(4,14)(5,10)(6,9)(11,15)(12,16)(17,30)(18,31)(19,32)(20,29)(21,26)(22,27)(23,28)(24,25), (17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,10)(4,9)(5,13)(6,14)(7,11)(8,12)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,3,23)(2,25,9,29)(4,31,16,27)(5,26,11,32)(6,20,8,24)(7,30,13,28)(10,21,15,19)(12,22,14,18), (1,2,7,8)(3,9,13,6)(4,5,14,10)(11,12,15,16)(17,25,30,24)(18,21,31,26)(19,27,32,22)(20,23,29,28) );
G=PermutationGroup([[(1,13),(2,6),(3,7),(4,12),(5,15),(8,9),(10,11),(14,16),(17,26),(18,25),(19,28),(20,27),(21,30),(22,29),(23,32),(24,31)], [(1,7),(2,8),(3,13),(4,14),(5,10),(6,9),(11,15),(12,16),(17,30),(18,31),(19,32),(20,29),(21,26),(22,27),(23,28),(24,25)], [(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,15),(2,16),(3,10),(4,9),(5,13),(6,14),(7,11),(8,12),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,17,3,23),(2,25,9,29),(4,31,16,27),(5,26,11,32),(6,20,8,24),(7,30,13,28),(10,21,15,19),(12,22,14,18)], [(1,2,7,8),(3,9,13,6),(4,5,14,10),(11,12,15,16),(17,25,30,24),(18,21,31,26),(19,27,32,22),(20,23,29,28)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4V |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | Q8 | D4 | C4○D4 | C23⋊C4 | C23.C23 |
kernel | C24.176C23 | C23.9D4 | C4×C22⋊C4 | C23.7Q8 | C2×C22⋊Q8 | C2×C4⋊C4 | C22×Q8 | C22⋊C4 | C22×C4 | C23 | C4 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 6 | 2 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of C24.176C23 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 2 | 3 |
0 | 0 | 1 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 3 |
0 | 0 | 0 | 1 | 0 | 3 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 1 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 1 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 3 |
1 | 2 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 4 | 0 |
0 | 0 | 3 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,2,2,1,2,0,0,3,3,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,3,3,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,1,2,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,1,3,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,2,1,2,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,3],[1,4,0,0,0,0,2,4,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,4,4,2,4,0,0,0,0,0,3] >;
C24.176C23 in GAP, Magma, Sage, TeX
C_2^4._{176}C_2^3
% in TeX
G:=Group("C2^4.176C2^3");
// GroupNames label
G:=SmallGroup(128,728);
// by ID
G=gap.SmallGroup(128,728);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,100,2019,1018,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=c,f^2=a*b*c,g^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,f*c*f^-1=c*d=d*c,c*e=e*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f^-1=a*e,f*g=g*f>;
// generators/relations